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Screening Effects in Elastic Electron Scattering* 
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In elastic electron scattering atomic screening is shown to affect the cross section both at very small and 
at very large angles. However, for energies above approximately 200 keV the large-angle screening effects are 
small, and the cross section may be written as a product of two factors, one depending on the screening effect 
only and the other on the spin and relativistic effects only. The cross section thus obtained is shown to be in 
good agreement with previous exact numerical calculations for all angles and all elements. Approximate 
expressions for large-angle scattering are obtained. 

I. INTRODUCTION 

THE effect of atomic screening on the elastic 
electron-scattering cross section has been con

sidered previously by various authors,1 in the first- and 
second-order Born approximation,2 in the Moliere ap
proximation,3 and more recently for electron energies in 
the range from 50 to 400 keV using phase-shift calcula
tions.4 The inclusion of the screening effect in the cross 
section is complicated by the presence of the spin and 
relativistic effects for the electron. The purpose of the 
present paper is to point out that spin and relativistic 
effects may be treated separately from the effect of 
atomic screening over a wide range of elements and 
atomic numbers. It is found that if the electron energy is 
larger than approximately 200 keV, then for any 
element and any scattering angle the cross section may 
be written as a product of two factors, one depending 
only on the atomic screening and the other only on the 
spin and relativistic effects. The evaluation of the first 
factor follows the method of Moliere,3 although the 
derivation given here is different. Since Moliere was the 
first to apply the WKB method to scattering by screened 
nuclei we would like to call this approximation Moliere 
approximation. For larger scattering angles two even 
simpler approximations can be applied, namely, a sta
tionary phase approximation which is identical to a 
classical computation, and an expansion leading to 
integrals which can be performed analytically. The 
present treatment of the screening effects is much 
simpler than the exact phase-shift calculations and yet 
yields values which are sufficiently accurate. 
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II. ESTIMATE OF SCREENING EFFECTS 

In order to estimate the relative importance of the 
atomic screening and the spin, it is convenient to treat 
separately the case of small angles, for which the 
momentum transfer q==2p sin0/2«^>, and the case of 
large angles, for which q^ 2p. Here p is the momentum 
of the electron and 6 the scattering angle. Throughout 
this paper energies and momenta are measured in units 
of mc2 and mc, and lengths are measured in units of the 
electron Compton wavelength. 

a. Small Angles, q<£p 

Since for small angles q<^p the field in which the 
electron is scattered is weak, it is sufficient for an esti
mate to consider the first-order Born approximation 
cross section for a potential V= — (Z/137r)e~Ar where 
the screening radius 1/A is of the order 137Z~1/3. With E 
as the total electron energy, the cross section becomes 

& J±S E? 

dQ, \137/ (?2+A2)2 
(l-/32sin26>/2). (1) 

The factor (g2+A2)-2 accounts for the atomic screening 
and the factor (1—/32 sin20/2) describes the spin effect. 
Thus, the latter is unimportant when 

/3sm0/2==2/2£<<l, (2) 

whereas screening effects are important when 

q<A=ZW/137. (3) 

It is possible then to treat spin and screening effects 
separately as long as both conditions (2) and (3) are 
maintained simultaneously. This requirement can be 
stated as 

Z 1 ' y i37X2£«l , (4) 

which is easily fulfilled for all elements and energies. 
Thus, in the region of small values of q, spin and screen
ing effects may always be treated separately. 
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b. Large Angles, q^2p 

For large angles, q~2p, the field in which the electron 
is scattered is no longer weak and the first-order Born 
approximation is not adequate for estimating the effects 
of spin and screening. From Dalitz's calculations per
formed in second-order Born approximation, we may-
obtain an estimate of these effects. The condition for 
small overlap of spin and screening effects for large 
angles is5 

Z4'3 2 
*= « 1 . (5) 

(137)2^ 

In Table I, £ is given for Z= 29 and Z= 79 for several 
electron energies. Since in the present treatment we do 
not try to incorporate the overlapping of the spin and 
screening effects, the values of £ in Table I indicate the 
order of magnitude of the error to be expected. It then 
follows that for electron energies above 200 keV the 
errors are small for all elements and for all angles. For 
lower energies the overlapping of the spin and screening 
effects may be appreciable for heavy elements and 
large angles. 

III. THE CROSS SECTION 

The estimates made in Sec. II show that screening 
and spin effects may be treated separately for all angles 
when condition (5) is fulfilled. The separate treatment 
suggests that the exact cross section may be written as 
a product of two factors, one of which takes into account 
screening effects but neglects spin, while the other takes 
into account spin effects but neglects screening. Thus 
the exact cross section is given by 

a-̂ i 
Ld&Je 

(6) 

where [d<r/d£l]ex, nose is the exact cross section for elastic 
scattering of an electron in an unscreened Coulomb 
field.6 The factor R takes into account screening, but 
does not contain electron spin effects, 

*=r-i /T-i (7) 

5 The Dalitz cross section of Ref. 2 is given by (see Ref. 1 for 
this particular form of the cross section) 

cfo_ ,(_Z\2W- ~ • — / <t2 V . z / "2 

- / 3 2 s in 5 Gi)'f[« 
X< tan"1 ^ - - s in^ /2 tan" 

inW2)(^-2)2
+ iJ(^)| 

'•+^(A*+4&- -if}] 
where A = ( ^ y - H ^ + A 4 ) 1 / 2

 a n d A^Z^3/137. For q~2p?>A the 
second-order Born term in the square bracket becomes 

_Z (2-/32)A Z4/3 2 
137 pp x ( 1 3 7 ) 2 ^ 

which leads to the condition Eq. (5). 
6 Tables for the exact relativistic electron Coulomb scattering 

cross section are given by J. A. Doggett and L. V. Spencer, Phys. 
Rev. 103, 1597 (1956); N. Sherman, ibid. 103, 1601 (1956). 

T(keV) 

Z=29 
Z=79 

TABLE I. Values for £=Z4/3/(137)2(2//3i>). 

50 

0.05 
0.19 

100 200 

0.025 0.014 
0.10 0.05 

400 

0.01 
0.03 

where [_dcr/d&]s0 and [_do-/dQ]ri080 are the cross sections 
for scattering of a spinless electron in a screened and 
unscreened potential, respectively. 

The ratio R may also be expressed in terms of the 
T matrices, 

R=\T8C\2/\Tnosc\
2. (8) 

The T matrix for a spinless particle is 

• / 

^ " " • ^ ( ^ ( r y ' i , 

where $1 is the scattering-state solution of 

(9) 

(10) 

here the subscripts 1 and 2 refer to initial and final 
state, respectively. 

In Eqs. (9) and (10) the pure Coulomb potential 
V= —Z/137r is used for obtaining rnosc, while the ap
propriate screened potential is used for finding rsc. 

If we introduce \pi(r) = ei^1'TF(r), the T matrix, Eq. 
(9), becomes 

= / en-* VF(r)d*x 

and the wave equation, Eq. (10), becomes 

(V2+2ipvV-2EV+V2)F(t) = 0. 

(9a) 

(10a) 

The T matrix for small values of q is obtained in the 
same manner as in a previous work7 where the case of 
high energies was considered. From Eq. (9a) we observe 
that for the case of the first-order Born approximation, 
F = l , the most important region in the integral is 
r^l/q. Since, as discussed in Sec. II, screening effects 
are only important for small values of q when the condi
tion (5) is satisfied, the important region of r in the 
integral (9a) is r^>l. Moreover, since for these large 
values of r the field is weak, F(t) is a slowly varying 
function. Therefore, the estimate based on the first-
order Born approximation is valid. Thus the important 
region in the integral (9a) including F (r) is r~ 1/<£>>1. In 
this region the terms V2F and V2F are of the relative 
order q/2E and Zq/137X2E as compared to the term 
2EVF, and may be neglected. We are therefore left with 

(ipvV-EV)F(r) = 0, 

7 H. Olsen, L. C. Maximon, and H. Wergeland, Phys. Rev. 106, 
27 (1957). Note: Sec. 9. 
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which has the solution 

F(p,z) = exp[~- j F(p,f)#], 

where the z axis is along pi. The T matrix Eq. (9a) then 
becomes, upon introducing cylindrical coordinates p,<£>, 
and z, 

-I T= I e*ri+***V(p,z) exp — / F(p,f)rff [-:/: dippdpdz, 

where qz and qi are the components of q parallel and 
perpendicular to pi, respectively. For small angles, 
£*«</> q—q&Q arid> s m c e 2^V#> t n e factor eiqzZ~ 1 
+Q(qz/q). Neglecting small terms of the order qz/q, the 
z integration may be performed, giving 8 

T=- le^p exp — / V(p£)dS \--\\d<ppdp 

/»00 

= -2wip Jo(qp) 
Jo 

X { e X P [ ^ ~ / F ( p ' f ) *]~ 1 } A r f p ' (U) 

where Jo(qp) is the Bessel function of zeroth order. 
Equation (11) is the Moliere approximation3 for the 

T matrix. The same formula has been derived by several 
authors9 in different ways. The only application to 
atomic screening, however, is in Moliere's paper. 

For the case of an unscreened potential V= —Z/I37r, 
| T'nosc | equals the Born approximation expression7 

|rnosc |=47r(Z/1375
2). 

Thus R [Eq. (8)] may be written in the form 

/137\V/32 | r" 

\ Z ) 4 lio 
Jo(qp){ }pdp (12) 

where V(r) = F(p,f) is the appropriate screened potential. 
The cross section is then given by Eq. (6) with R as 

given by Eq. (12). The quantity £ in Eq. (5) and Table I 

8 It might be shown that the phase-shift analysis at small angles 
leads to the same expression as Eq. (11); see Refs. 3 and 7. 

9 L D. Landau and E. M. Lifshitz, Quantum Mechanics (Ogiz, 
Moscow, 1948), (in Russian), Part I, pp. 184-203, 470-473 
[(English transl.: Pergamon Press, Inc., New York, 1958)]; G. 
Parzen, Phys. Rev. 81, 808 (1951); R. J. Glauber, Phys. Rev. 91, 
459 (1953); E. W. Montroll and J. M. Greenberg, Proc. Symp. 
Appl. Math. 5, 103 (1954); B. J. Malenka, Phys. Rev. 95, 522 
(1954); I. I. GoFdman and A. B. Migdal, Zh. Eksperim. i Teor. 
Fiz. 28, 394 (1954) [(English transl.: Soviet Phys.—JETP 1, 
304 (1955)]; L. I. Schiff, Phys. Rev. 103, 443 (1956); D. S. Saxon 
and L. I. Schiff, Nuovo Cimento 6, 614 (1957). 

z 
z 

TABLE II. Parameters 

= 29 
= 79 

a\ 

0.22 
0.19 

a% 

0.78 
0.56 

in screened potential Eq. 

a3 

0 
0.25 

h 

0.319 
0.257 

b2 

1.081 
0.779 

(13). 

h 
0 
3.16 

represents the error to be expected in the expression for 
R Eq. (12). 

Although we have assumed small scattering angles in 
deriving formula (12), we shall henceforth assume this 
formula to be valid for all angles. This assumption is 
justifiable on the grounds that for large angles screening 
is unimportant and the potential approaches the pure 
Coulomb potential V— —Z/137r. The ratio R as a func
tion of q Eq. (12) approaches the value unity, which is 
the correct value for large angles in the absence of large-
angle screening effects as discussed in Sec. lib. The 
ultimate justification for extending the assumption to 
all angles will be the close agreement between the results 
of the approximated and the exact calculations. 

IV. NUMERICAL INTEGRATION 

To establish the accuracy of the present theory we 
have integrated Eq. (12) numerically for the values of Z 
and electron energies shown in Table I which are the 
same parameters as those used by Lin4 in his exact 
phase-shift analysis thus making a direct comparison 
with his results possible. We also use the same Hartree-
Byatt10 potentials as does Lin.4 These are of the form 

V(r)=-(Z/137r)Zaie~biAr, (13) 

where the constants ai and bi are given in Table II, 
and where A=Z1'3/0.885X137. 

The integral in the exponent in Eq. (11) then becomes 

>L (i/P) / F(p,f)#= l ia E ajKo(bjPA), (14) 

where a=Z/137/3. For the numerical calculation it is 
convenient to perform a partial integration on the 
integral in Eq. (12); using qpJo(qp) = d/dp[pJi(qp)~] we 
obtain with y= q/A and x= pA, 

R- E Qkbk / xdxJi(xy)Ki(bkx) 

Xexp{2ia £ ajK0(bjx)} 

=Qi2+Q 2 j (15) 

> W. J. Byatt, Phys. Rev. 104, 1298 (1956). 



S C R E E N I N G E F F E C T S I N E L A S T I C E L E C T R O N S C A T T E R I N G A1549 

where 

3 /•« 

Qi=yJL akbk I xdxJi(xy)Ki{bk%) 
i Jo 

Xcos{2a X) ajKo(bjx)}, 
(16) 

3 -oc 

Q2=—yY,akbkl xdxJi(xy)Ki(bkx) 
i Jo 

Xsin{2# Y, ajKo(bjx)}. 

The partial integration thus produced the factor 
Ki(bkx) in the integrands of Qi and Q^ The integrals are 
then rapidly converging for large values of x by virtue 
of the exponentially decaying K\(bkx). Moreover, the 
infinite oscillations of the integrand due to the loga
rithmic divergence of Ko(bjx) for small x are suppressed 
by the vanishing Bessel function Ji(xy). 

The computations were programmed in Fortran and 
run on an IBM-7090 computer. Subroutines for the 
Bessel functions Ji(x) with accuracy better than 0.08% 
were available. A program for the Hankel functions 
Ko(x) and K\{x) was developed, with an accuracy 
better than 0 .1%. The results of the integration are 
given in Table I I I . I t is seen that the magnitude of the 
maximum error in R is very close to the errors given by 
the values of £ in Table I as was anticipated in Sec. I I . 

From Table I I I it is seen that errors of the ratio R 
given by the present theory are of the order of 5 % or less 
for all angles and for energies above 50 keV in the case 
of the light elements, and for energies above 200 keV in 
the case of the heavy elements. The errors for small 
angles 0 ̂  10° where screening is most important are 
much smaller, of the order 1% or less for all elements. 

The present method of calculation, which is much 
simpler than the exact phase-shift analysis thus provides 
values of the cross section sufficiently accurate for most 
experimental applications for all elements and all 
angles in a wide range of energies. 

V. STATIONARY-PHASE APPROXIMATION 

Although the expression Eq. (15) gives J? in a form 
which readily may be used for numerical integration, it 
might be of interest to derive approximate expressions 
for R valid in restricted ranges of y=q/A. One way of 
doing this is to use the method of stationary phase.11 

In our case the magnitude of 2a— 2 (Z/13 70), which is 
crucial for the application of the stationary-phase ap
proximation, does not seem large enough to give ac
curate values for R. Since, however, the method gives 
an expression for R which in the case of moderately 
small angles is identical to the classically derived expres
sion as we shall see, the procedure should be reliable as 
long as the effect of screening is not too strong. In other 
words the stationary-phase approximation should be 
accurate for large values y= q/A. Here we use the same 
arguments in extending the small-angle results to large 
angles as at the end of Sec. I I I . 

11 See also G. Moliere, Ref. 3, Sec. 5. 

We write Eq. (11) in the form 

T= (p/i) fe^'o-^dcppdp, (17) 

where 

/
•foo 

-00 

The second term in Eq. (11) which is equal to — (fi/i) 
X(2x)25(q) is zero for finite angles and has been left 
out. The point of stationary phase (<po,po) is given by 
VpCq-p—0(p)]=O, or 0>o=O, and 

S(po)=|d*(po)/dpo|. (18) 

Then the scattering matrix is 

r 1 a*(P0) dV(po)-r1/2 

r = 2 * 0 . (19) 
Lpo dpo d2po J 

The cross section is 

^ c r / ^ = | r | 2 E 2 / ( 2 7 r ) 2 . (20) 

When T Eq. (19) is substituted into Eq. (20) and the 
relations d<t>/dp0=q, d2<t>/d2p0

2=dq/dp0 from Eq. (18) 
are used, we find 

^2p0 sinddd 
d<T=2ir —2irpodpo. (21) 

qdq/dpo 

Equation (21) is identical to the classical expression 
for the scattering cross section in terms of the impact 
parameter po. Equation (18) giving the impact param
eter in terms of the momentum transfer is identical to 
the classical small-angle relation between the scattering 
angle and the potential.12 Since the classical cross 
section for an unscreened potential (the Rutherford 
cross section) is exact, we conclude that the stationary-
phase method is reliable as long as the screening is not 
too strong, i.e., for large values of yo=q(po)/A. 

Written in terms of y0 and x0= poA, the stationary-
phase approximation for R, which is identical to the 
classically computed Rc\&sa, is 

^cias8=^o2(jo/2a)3[(^0/2a)+^oZ aib?Ko{bixo)~]~l, (22) 

where we have used the potential given in Eq. (13) and 
Table II . The quantity x0 in terms of yo follows from 
Eq. (18) 

yo/2a= £ aibiKi{biXQ). (23) 

Values for JRciass calculated numerically from Eqs. 
(22) and (23) given in Table I I I are seen to be close to 

12 The classical action function S{r) satisfying (ypS)2+2EV 
— V2+tn2 = E is for large impact parameters S=piz—(l/{3) 
Xy*-^ V(p£)d{, where the z-axis is along pi. The transverse 
momentum at Z —> oo which is equal to qi is 

and thus equal to Eq. (18) for small angles. 
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T A B L E I I I . Values for the exact cross-section ratio i? e x ; the Moliere approximation i?, Eqs . (15) and (16); the classical approximation 
•Rciass, Eqs . (22) and (23); the large-angle approximation 7?L.A., Eqs . (25) and (26); and the first-order Born approximation RBOIU, 
e= (R-ReX)/Rex. 

e 
(degrees) Rex R 

50 keV 

tyo) ^class * L . A . 

Z=29 

•^Born -Rex R 

100 keV 
6 

( % ) -Rclass RL.JL i^Born 

2 
4 
6 
8 

10 
20 
30 
40 
50 
60 
70 
80 
90 

100 
110 
120 
130 
140 
150 
160 
170 

0.732 
0.910 
0.966 
0.996 
1.016 
1.023 
1.030 
1.033 
1.036 
1.041 
1̂ 042 
1.045 
1.045 
1.047 
1.050 
1.053 
1.045 

0.118 
0.352 
0.527 
0.638 
0.711 
0.878 
0.933 
0.957 
0.970 
0.976 
0.981 
0.984 
0.987 
0.988 
0.989 
0.990 
0.991 
0.991 
0.992 
0.992 
0.992 

-2 .83 
-3 .55 
-3 .47 
-3 .88 
-4 .58 
-4 .56 
-4.72 
-4 .75 
-4 .74 
-5 .04 
-5 .10 
-5 .26 
-5 .17 
-5 .32 
-5 .41 
-5.82 
-5 .09 

0.248 
0.459 
0.609 
0.689 
0.758 
0.900 
0.945 
0.964 
0.975 
0.981 
0.985 
0.987 
0.989 
0.991 
0.992 
0.992 
0.993 
0.993 
0.994 
0.994 
0.994 

0.696 
0.883 
0.937 
0.960 
0.972 
0.979 
0.983 
0.986 
0.988 
0.990 
0.991 
0.992 
0.992 
0.993 
0.993 
0.993 
0.994 

0.137 
0.426 
0.638 
0.763 
0.835 
0.953 
0.979 
0.988 
0.992 
0.994 
0.996 
0.996 
0.997 
0.997 
0.998 
0.998 
0.998 
0.998 
0.998 
0.998 
0.998 

0.869 
0.966 
0.986 
1.005 
1.011 
1.013 
1.012 
1.015 
1.022 
1.018 
1.008 
1.042 
1.022 
1.012 
1.010 
1.089 
1.001 

0.240 
0.552 
0.714 
0.799 
0.853 
0.949 
0.974 
0.985 
0.989 
0.992 
0.994 
0.996 
0.997 
0.998 
0.999 
0.999 
1.000 
1.000 
1.000 
1.001 
1.001 

-1.82 
-1 .78 
-1 .28 
-1 .91 
-2 .20 
-2 .09 
-1 .75 
-1 .84 
-2 .43 
-1 .95 
-0 .93 
-4 .09 
-2 .18 
-1 .15 
-0 .96 
-8 .06 
-0 .05 

0.445 
0.681 
0.766 
0.844 
0.895 
0.963 
0.981 
0.988 
0.991 
0.994 
0.995 
0.996 
0.996 
0.997 
0.997 
0.997 
0.998 
0.998 
0.998 
0.998 
0.998 

0.849 
0.951 
0.976 
0.985 
0.990 
0.992 
0.994 
0.995 
0.996 
0.996 
0.997 
0.997 
0.997 
0.997 
0.998 
0.998 
0.998 

0.267 
0.620 
0.792 
0.872 
0.915 
0.977 
0.990 
0.994 
0.996 
0.997 
0.998 
0.998 
0.999 
0.999 
0.999 
0.999 
0.999 
0.999 
0.999 
0.999 
0.999 

200 keV 

2 
4 
6 
8 

10 
20 
30 
40 
50 
60 
70 
80 
90 

100 
110 
120 
130 
140 
150 
160 
170 

0.939 
0.994 
1.001 
1.011 
1.002 
1.005 
1.006 
1.003 
0.999 
0.998 
0.995 
1.007 
1.005 
1.005 
1.011 
1.036 
1.009 

0.427 
0.735 
0.849 
0.904 
0.931 
0.979 
0.990 
0.995 
0.997 
0.999 
1.000 
1.001 
1.002 
1.003 
1.004 
1.005 
1.006 
1.006 
1.006 
1.007 
1.007 

-0.77 
-1.53 
-1.06 
-1.57 
-0.47 
-0.62 
-0.62 
-0.21 
0.30 
0.46 
0.85 

-0.82 
0.05 
0.09 

-0.43 
-2.82 
-0.19 

0.660 
0.845 
0.919 
0.939 
0.959 
0.987 
0.993 
0.996 
0.997 
0.998 
0.998 
0.999 
0.999 
0.999 
0.999 
0.999 
0.999 
0.999 
0.999 
0.999 
0.999 

0.934 
0.980 
0.990 
0.994 
0.996 
0.997 
0.998 
0.998 
0.998 
0.999 
0.999 
0.999 
0.999 
0.999 
0.999 
0.999 
0.999 

Z=29 

0.465 
0.786 
0.894 
0.938 
0.959 
0.989 
0.995 
0.997 
0.998 
0.999 
0.999 
0.999 
0.999 
0.999 
0.999 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 

400 keV 

0.986 
1.017 
1.025 
1.007 
0.989 
0.980 
0.982 
0.979 
0.984 
0.996 
0.996 
0.996 
1.005 
1.019 
1.034 
1.054 
1.075 

0.643 
0.866 
0.931 
0.958 
0.971 
0.993 
0.997 
0.999 
1.001 
1.002 
1.004 
1.005 
1.007 
1.008 
1.009 
1.010 
1.011 
1.012 
1.013 
1.013 
1.014 

-1.60 
-2.39 
-2.71 
-0.82 

1.17 
2.22 
2.26 
2.68 
2.29 
1.16 
1.32 
1.45 
0.61 

-0.65 
-2.01 
-3.86 
-5.50 

0.825 
0.933 
0.963 
0.979 
0.984 
0.995 
0.998 
0.998 
0.999 
0.999 
0.999 
0.999 
0.999 
0.999 
0.998 
0.999 
0.999 
0.998 
0.997 
0.997 
0.997 

0.972 
0.992 
0.996 
0.998 
0.998 
0.999 
0.999 
0.999 
0.999 
0.999 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 

0.677 
0.897 
0.952 
0.972 
0.982 
0.995 
0.997 
0.999 
0.999 
0.999 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 

50 keV 

2 
4 
6 
8 

10 
20 
30 
40 
50 
60 
70 
80 
90 

100 
110 
120 
130 
140 
150 
160 
170 

0.307 
0.495 
0.631 
0.733 
0.810 
0.870 
0.923 
0.967 
1.004 
1.044 
1.086 
1.112 
1.142 
1.174 
1.191 
1.202 
1.217 

0.049 
0.133 
0.200 
0.254 
0.298 
0.470 
0.586 
0.663 
0.720 
0.759 
0.786 
0.811 
0.833 
0.851 
0.861 
0.868 
0.876 
0.882 
0.885 
0.889 
0.892 

-2 .83 
-4 .84 
-7 .04 
-9 .58 

-11.2 
-12.8 
-14.8 
-16.1 
-17.0 
-18.4 
-20.7 
-21.9 
-23.3 
-24.9 
-25.7 
-26.0 
-26.7 

0.054 
0.136 
0.201 
0.257 
0.299 22.06 
0.474 
0.588 
0.668 
0.725 
0.767 
0.798 
0.822 
0.841 
0.856 
0.867 
0.876 
0.883 
0.888 
0.892 
0.895 
0.897 

1.874 
0.825 
0.691 
0.696 
0.727 
0.758 
0.785 
0.807 
0.825 
0.839 
0.850 
0.859 
0.866 
0.870 
0.874 
0.876 

Z=79 

0.082 
0.263 
0.410 
0.515 
0.594 
0.808 
0.895 
0.934 
0.955 
0.967 
0.975 
0.980 
0.983 ; 
0.986 
0.987 
0.989 
0.990 
0.990 
0.991 
0.991 
0.991 

100 keV 

0.469 
0.673 
0.794 
0.869 
0.919 
0.957 
0.981 
1.003 
1.018 
1.037 
1.052 
1.067 
1.076 
1.095 
1.105 
1.107 
1.119 

0.109 
0.240 
0.330 
0.400 
0.464 
0.661 
0.756 
0.817 
0.860 
0.890 
0.909 
0.921 
0.933 
0.944 
0.947 
0.949 
0.953 
0.957 
0.958 
0.961 
0.962 

- 2 35 
-2 .66 
-4 .77 
-5 .93 
-6.42 
-7 .01 
-7 .34 
-8 .17 
-8.32 
-8 .97 

-10.0 
-11.0 
-11.4 
-12.6 
-13.4 
-13.2 
-14.0 

0.131 
0.249 
0.340 
0.404 
0 464 
0.661 
0.765 
0.827 
0.866 
0.892 
0.910 
0.923 
0.933 
0.940 
0.946 
0.950 
0.953 
0.956 
0.957 
0.959 
0.959 

1.996 
0.629 
0.699 
0.776 
0.829 
0.864 
0.888 
0.905 
0.918 
0.927 
0.935 
0.940 
0.944 
0.947 
0.949 
0.951 
0.952 

0.162 
0.397 
0.544 
0.643 
0.715 
0.889 
0.944 
0.967 
0.978 
0.984 
0.988 
0.990 
0.992 
0.993 
0.994 
0.994 
0.995 
0.995 
0.996 
0.996 
0.996 
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TABLE III {continued) 

6 
(degrees) 

2 
4 
6 
8 

10 
20 
30 
40 
50 
60 
70 
80 

* 90 
100 
110 
120 
130 
140 
150 
160 
170 

-^ex 

0.636 
0.812 
0.891 
0.942 
0.970 
0.987 
0.993 
1.001 
1.013 
1.020 
1.026 
1.032 
1.037 
1.046 
1.050 
1.053 
1.057 

R 

0.204 
0.377 
0.484 
0.569 
0.630 
0.802 
0.879 
0.916 
0.936 
0.950 
0.957 
0.962 
0.964 
0.965 
0.968 
0.969 
0.967 
0.966 
0.967 
0.968 
0.968 

200 keV 

(%) 

-1 .03 
-1 .19 
-1 .45 
-2 .73 
-3 .35 
-3 .76 
-3 .63 
-3 .80 
-4 .79 
-5 .41 
-5 .64 
-6 .14 
-6 .77 
-7 .67 
-7 .88 
-8 .04 
-8 .43 

•*vdass 

0.237 
0.387 
0.497 
0.579 
0.643 
0.816 
0.887 
0.922 
0.943 
0.955 
0.964 
0.970 
0.974 
0.977 
0.979 
0.981 
0.982 
0.983 
0.984 
0.985 
0.985 

RL.A. 

0.582 
0.747 
0.851 
0.901 
0.928 
0.945 
0.956 
0.963 
0.968 
0.973 
0.976 
0.978 
0.979 
0.980 
0.981 
0.982 
0.982 

Z=79 

RBOTO. 

0.285 
0.538 
0.677 
0.766 
0.826 
0.943 
0.973 
0.984 
0.989 
0.992 
0.994 
0.995 
0.996 
0.997 
0.997 
0.997 
0.998 
0.998 
0.998 
0.998 
0.998 

Rex 

0.771 
0.903 
0.934 
0.962 
0.991 
0.995 
0.997 
0.998 
0.997 
1.000 
1.006 
1.009 
1.012 
1.023 
1.024 
1.026 
1.030 

R 

0.336 
0.528 
0.646 
0.726 
0.779 
0.903 
0.943 
0.961 
0.969 
0.973 
0.977 
0.980 
0.980 
0.982 
0.982 
0.986 
0.986 
0.986 
0.987 
0.989 
0.990 

400 keV 

( % ) • 

1.02 
-0 .00 

0.12 
-0 .15 
-2 .18 
-2.22 
-2 .06 
-1 .81 
-1.82 
-1 .79 
-2 .36 
-2 .32 
-2 .54 
-3.62 
-3 .45 
-3 .55 
-3 .92 

•iMjlass 

0.363 
0.552 
0.668 
0.744 
0.797 
0.913 
0.950 
0.968 
0.977 
0.982 
0.986 
0.988 
0.990 
0.991 
0.992 
0.993 
0.993 
0.994 
0.994 
0.994 
0.994 

RL.A. 

0.700 
0.883 
0.937 
0.960 
0.972 
0.979 
0.983 
0.986 
0.988 
0.990 
0.991 
0.992 
0.992 
0.993 
0.993 
0.993 
0.994 

xvBorn 

0.440 
0.682 
0.803 
0.870 
0.910 
0.974 
0.988 
0.993 
0.995 
0.997 
0.997 
0.998 
0.998 
0.999 
0.999 
0.999 
0.999 
0.999 
0.999 
0.999 
0.999 

the values obtained by the numerical integration in 
Sec. IV for 6^ 10°, i.e., for values of y somewhat larger 
than one. Note that y^ 3.1 when T^ 50 keV and 6> 10° 
for Z = 2 9 , and under the same conditions y^2.2 for 
Z = 7 9 . 

The incorrectness of Eq. (22) for small angles may be 
seen explicitely if the error in the stationary-phase 
expression is computed. This is found to be of the order 
(Zyo/137)~2 for small values of yo, and thus becomes 
very large for small y0. I t should also be pointed out that 
the cross section Eq. (20) with T given by Eq. (19) gives 
an infinite total cross section even for an exponentially 
screened potential. The classically computed cross 
section is thus infinite for any continuous potential; it is 
only finite for a (discontinuous) potential which is 
identically zero outside a given distance from the 
scatterer. 

From Eqs. (22) and (23) it follows that Rcum depends 
on the scattering angle and energy through the variable 
yo/2a=qf3l37/2ZA. Thus for a given element Ĵ ciass is 
constant for q/3=2@2E sin0/2= const. Note that the 
Born approximation which is less accurate for low 
velocities predicts R= const for q= 2$E sin0/2= const. 

VI. LARGE-ANGLE APPROXIMATION 

Another approximate formula for R for large values of 
y may be obtained by observing that for large values of 
q in Eq. (11) only small values of p are important.11 

Expanding the exponent in Eq. (12) we'find introducing 
as before y=q/A and x=pA 

R=-
4a2 

/ • 
J o 

dxxl~2iaJo (xy) exp[2iax2 (fa—fa lnx) ] 

where as in Sec. V we have left out the term proportional 
to 5(q) and where 

02= Z) dibi2, 
1 

with 7=1.7807 (Euler's constant). 
Expanding the exponential function in Eq. (24) and 

keeping terms of order x2 all integrals can be per
formed, and the final result is 

with 
£ L . A . = ( Q I 2 + C 2 2 ) L . A . , 

4#2 3a2—1 
Qi= l - [* i+fc( ln(y /2) -P)}—+H -, 

2a ( 1 - a2) 4a 
G*= -[>i+fc(ln(y/2)-P)] +tf»2—, 

(25) 

(26) 

(24) 

where 
P=Re[>(* , a)] . 

For the values of a,i and hi of Moliere,3 Eqs. (26) reduce 
to Moliere's Eq. (8.4)8 when terms of the order a? and a4 

are omitted. 
Values for the large-angle approximation RL.A. are 

given in Table I I I . The accuracy is of the same order as 
for the classical result jRcia8S, but the errors are always 
somewhat larger particularly for heavy elements. 

VII. CONCLUSIONS 

Four approximations for the ratio R of the scattering 
cross section of a screened potential to that of an un-
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screened potential were calculated and compared with 
the result of exact phase-shift calculations, JRCX. Table 
III lists these results in detail and permits the recogni
tion of the following: 

(1) The Moliere approximation renders R by Eqs. 
(15) and (16) with an error of the order £ [Eq. (5) and 
Table I ] . 

(2) The classical approximation renders Rc\^s by 
Eqs. (22) and (23) with an error which is comparable to 
that of R for scattering angles larger than 10°. 

(3) The large-angle approximation renders RL.A. by 
Eqs. (25) and (26) with errors generally larger than 
° f ^class* 

(4) The first-order Born approximation gives values, 
i?Bom, the errors of which exceed those of all the other 
approximations. Even for the light element Z=29 and 
for small angles the errors are larger than 10%. 
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Analytical Relativistic Self-Consistent Field Theory* 
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The analytical self-consistent field (SCF) theory, based on the relativistic Breit equation generalized for 
many particles, was developed for closed-shell systems. The relativistic SCF equations, both of the absolute 
and of the expansion method type, were derived in the four-component spinor representation. The Breit 
operator was considered in the first-order perturbation theory. The formulas for the relativistic atomic inte
grals were derived in terms of simple functions. 

INTRODUCTION 

IN this work the relativistic Breit equation1 is con
sidered generalized for many-particle systems. Then 

the relativistic self-consistent field (SCF) theory for 
closed-shell systems is developed, partially using an 
analogy with the expansion method2,3 of the nonrela-
ti vis tic theory. The applications4 of the expansion 
method encourage such an attempt at a relativistic 
extension. 

While this work was outlined,5 an approach related 
to the numerical SCF method appeared in the litera
ture.6 Recently, another approach was made.7 

* The work was originated at the University of Chicago, 
Chicago, Illinois. 
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GENERAL CONSIDERATIONS 

The validity of the Breit equation for two electrons 
has been proved both theoretically1 and by practical 
applications.8 It is quite plausible to assume that even 
in a many-electron system mutual interactions between 
electrons can be approximated by interactions within 
all possible pairs of electrons where in every pair only 
the two-electron Breit interaction is considered. Similar 
although simpler consideration was performed already 
by Swirles9 in an atomic case, by going from the Dirac 
equation to the approximate many-electron relativistic 
equation (while omitting the Breit operator). In the 
molecular case the influence of nuclei can be approxi
mated as an external field.10 

Hence we introduce the generalized Breit equation for 
a system of N electrons (and M nuclei) as follows: 

/ N N 1 \ 

N l r (^•r^)(« I '-r^)l 
= - I , 2 E _ J a M . a , + \U9 (1) 

8 G. Araki, Proc. Phys. Math. Soc. Japan 19, 128 (1937). 
9 B . Swirles, Proc. Roy. Soc. (London) A152, 625 (1935). 
10 K. S. Viswanathan, Proc. Indian Acad. Sci., Sec. A 50, No. 1 

(1959). Diatomic molecules are considered. 


